15705 measured reflections

 $R_{\rm int}=0.045$

4122 independent reflections

3307 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-[4-(Dimethylamino)styryl]-1methylpyridinium 4-methylbenzenesulfonate monohydrate¹

Suchada Chantrapromma,^a*§ Kullapa Chanawanno^a and Hoong-Kun Fun^b¶

^aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: suchada.c@psu.ac.th

Received 29 June 2010; accepted 4 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.156; data-to-parameter ratio = 14.6.

The cation of the title compound, $C_{16}H_{19}N_2^+ \cdot C_7H_7O_3S^- \cdot H_2O$, exists in the *E* configuration with respect to the C=C double bond and is essentially planar, the dihedral angle between the pyridinium and benzene rings being $3.55 (13)^{\circ}$. In the crystal, π -conjugated planes of cations and anions are inclined to each other at 84.30 (11)°. The crystal structure is stabilized by O- $H \cdots O$ hydrogen bonds and weak $C - H \cdots O$ interactions, which link the cations, anions and water molecules into chains along the b axis. These chains are stacked along the a axis by π - π interactions with centroid-centroid distances of 3.6032 (16) and 3.6462 (16) Å.

Related literature

For bond-length data, see Allen et al. (1987). For background to and applications of quarternary ammonium compounds and sulfonamides, see: Barlow et al. (1937); Ohkura et al. (2003); Pernak et al. (2001). For related structures, see: Chanawanno et al. (2010); Kobkeatthawin et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\gamma = 76.865 \ (2)^{\circ}$ $C_{16}H_{19}N_2^+ \cdot C_7H_7O_3S^- \cdot H_2O$ V = 1056.8 (2) Å³ $M_r = 428.53$ Triclinic, P1 Z = 2a = 7.3469 (9) Å Mo $K\alpha$ radiation b = 9.8860 (12) Å $\mu = 0.19 \text{ mm}^{-1}$ c = 15.5541 (19) Å T = 100 K $\alpha = 75.801$ (3) $0.47 \times 0.13 \times 0.06 \text{ mm}$ $\beta = 79.438(3)^{\circ}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.919, \ T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of
$wR(F^2) = 0.156$	independent and constrained
S = 1.11	refinement
4122 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
282 parameters	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Table 1

		0	
Hydrogen-bond	geometry ((À,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1W1···O2	0.83 (5)	1.96 (5)	2.774 (3)	170 (4)
$O1W - H2W1 \cdots O1^{i}$	0.94 (4)	1.99 (4)	2.906 (3)	167 (3)
$C1-H1A\cdots O1^{ii}$	0.93	2.55	3.424 (3)	157
$C2-H2A\cdots O1^{iii}$	0.93	2.54	3.382 (4)	150
$C4-H4A\cdots O1W$	0.93	2.35	3.222 (4)	157
$C6-H6A\cdots O3^{iv}$	0.93	2.53	3.456 (4)	176
C9−H9A···O2	0.93	2.49	3.376 (3)	158
$C13-H13A\cdots O3^{iv}$	0.93	2.49	3.390 (4)	164
$C14-H14B\cdotsO1^{ii}$	0.96	2.56	3.479 (4)	161

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y + 1, z; (iii) -x + 2, -y + 1, -z; (iv) x, y + 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit and the Malaysian Government and Universiti Sains Malaysia for the

¹This paper is dedicated to Her Royal Highness Princess Chulabhorn Walailak of Thailand on the occasion of her 53rd Birthday Anniversary which fell on July 4th, 2010.

[§] Thomson Reuters ResearcherID: A-5085-2009.

Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Research University Golden Goose grant No. 1001/PFIZIK/ 811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5034).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Barlow, O. W. (1937). Proc. Soc. Exp. Biol. Med. 37, 315.

- Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). *Eur. J. Med. Chem.* In the press. doi:10.1016/ j.ejmech.2010.06.014.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Kobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, 076–077.
- Ohkura, K., Sukeno, A., Yamamoto, K., Nagamune, H., Maeda, T. & Kourai, H. (2003). *Bioorg. Med. Chem.* **11**, 5035–5043.
- Pernak, J., Kalewska, J., Ksycifiska, H. & &Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899–907.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1975-o1976 [doi:10.1107/S1600536810026309]

(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate

S. Chantrapromma, K. Chanawanno and H.-K. Fun

Comment

Quarternary ammonium compounds and sulfonamide drugs are the interesting antibacterial agents. They are widely used in industrial disinfection and hospital treatment (Barlow *et al.*, 1937; Ohkura *et al.*, 2003). Pyridinium derivatives represent a class of synthetic quarternary ammonium compounds that show significant antibacterial activity. (Pernak *et al.*, 2001). The title compound was synthesized based on the combination of pyridinium and sulfonamide chemophores in order to yield a potent disinfectant. Our biological activity results showed that the title compound was moderately active against Gram-positive bacteria *ie* Methicillin-Resistant *Staphylococcus aureus* with the MIC = 37.5 μ g/ml. However it was inactive against the Gram-negative bacteria we tested which are *Pseudomonas aeruginosa*, *Salmonella typhi* and *Shigella sonnei* (Chanawanno *et al.*, 2010). Herein its crystal structure is reported.

Fig. 1 shows the asymmetric unit of the title compound (I) which consists of the $C_{16}H_{19}N_2^+$ cation, $C_7H_7O_3S^-$ anion and one H₂O molecule. The cation exists in the *E* configuration with respect to the C6=C7 double bond [1.343 (4) Å]. The cation is essentially planar with the dihedral angle between the pyridinium and the dimethylaminophenyl rings being 3.55 (13)° and with the torsion angle C5–C6–C7–C8 = 176.3 (3)°. Both methyl groups of dimethylamino moiety are slightly twisted from the mean plane of the attached C8–C13 ring as indicated by the torsion angles C15–N2–C11–C10 = 9.3 (4)° and C16–N2–C11–C12 = 3.5 (4)°. The relative arrangement of cation and anion is shown by the interplanar angle between the mean plane of the π -conjugate system (C1–C13/N1) of the cation and the C17–C22 benzene ring of the anion being 84.30 (11)°. The bond lengths (Allen *et al.*, 1987) and angles in (I) are in normal ranges and comparable with a related structure (Kobkeatthawin *et al.*, 2009).

In the crystal packing, all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cation is linked to both the anion and water molecule by weak C—H···O interactions, and the anion is linked to the water molecule by O—H···O hydrogen bond. These three molecules are linked into chains along the *b* axis (Table 1, Fig. 2). These chains are stacked along the *a* axis (Fig. 2) by π - π interactions with the distances Cg_1 ··· $Cg_1 = 3.6032$ (16) Å (symmetry code: 2 - *x*, 2 - *y*, -*z*) and Cg_1 ··· $Cg_2 = 3.6462$ (16) Å (symmetry code: 1 - *x*, *y*, *z*); Cg_1 and Cg_2 are the centroids of the N1/C1–C5 and C8–C13 rings, respectively.

Experimental

The title compound was prepared by the reported procedure (Chanawanno *et al.*, 2010). Orange needle-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after a few weeks. Mp. 468–469 K.

Refinement

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were placed in calculated positions with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}(C)$ for aromatic and CH and 0.96 Å, $U_{iso}=1.5U_{eq}(C)$ for CH₃ atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.08 Å from O1 and the deepest hole is located at 0.85 Å from S1.

Figures

Fig. 1. The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of (I) viewed along the *a* axis. The O—H…O hydrogen bonds and weak C—H…O interactions are drawn as dashed lines.

(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate

Crystal data

$C_{16}H_{19}N_2^+C_7H_7O_3S^-H_2O$	Z = 2
$M_r = 428.53$	F(000) = 456
Triclinic, <i>P</i> T	$D_{\rm x} = 1.347 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point = 468–469 K
<i>a</i> = 7.3469 (9) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 9.8860 (12) Å	Cell parameters from 4122 reflections
c = 15.5541 (19) Å	$\theta = 1.4 - 26.0^{\circ}$
$\alpha = 75.801 \ (3)^{\circ}$	$\mu = 0.19 \text{ mm}^{-1}$
$\beta = 79.438 \ (3)^{\circ}$	T = 100 K
$\gamma = 76.865 \ (2)^{\circ}$	Needle, orange
$V = 1056.8 (2) \text{ Å}^3$	$0.47 \times 0.13 \times 0.06 \text{ mm}$
Data collection	
Bruker APEXII DUO CCD area-detector	4122 independent reflections

diffractometer	4122 independent reflections
Radiation source: sealed tube	3307 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.045$

ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -9 \rightarrow 9$
$T_{\min} = 0.919, \ T_{\max} = 0.989$	$k = -12 \rightarrow 12$
15705 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.156$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.069P)^{2} + 1.5338P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4122 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
282 parameters	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	1.0171 (3)	0.9737 (2)	0.12371 (15)	0.0145 (5)
N2	-0.1299 (3)	0.8266 (3)	0.39380 (16)	0.0215 (5)
C1	1.1969 (4)	0.9572 (3)	0.08076 (18)	0.0176 (6)
H1A	1.2683	1.0256	0.0766	0.021*
C2	1.2745 (4)	0.8414 (3)	0.04353 (19)	0.0198 (6)
H2A	1.3976	0.8309	0.0143	0.024*
C3	1.1662 (4)	0.7399 (3)	0.05011 (18)	0.0189 (6)
H3A	1.2161	0.6606	0.0252	0.023*
C4	0.9842 (4)	0.7579 (3)	0.09382 (18)	0.0170 (6)
H4A	0.9115	0.6905	0.0975	0.020*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.9067 (4)	0.8750 (3)	0.13271 (18)	0.0152 (5)
C6	0.7180 (4)	0.8965 (3)	0.18253 (18)	0.0166 (6)
H6A	0.6710	0.9821	0.2007	0.020*
C7	0.6089 (4)	0.7978 (3)	0.20334 (18)	0.0177 (6)
H7A	0.6566	0.7156	0.1812	0.021*
C8	0.4235 (4)	0.8062 (3)	0.25704 (18)	0.0166 (5)
C9	0.3246 (4)	0.6955 (3)	0.26819 (19)	0.0182 (6)
H9A	0.3816	0.6174	0.2431	0.022*
C10	0.1460 (4)	0.6991 (3)	0.31509 (18)	0.0168 (6)
H10A	0.0860	0.6230	0.3223	0.020*
C11	0.0532 (4)	0.8173 (3)	0.35233 (18)	0.0163 (5)
C12	0.1546 (4)	0.9257 (3)	0.34420 (18)	0.0176 (6)
H12A	0.0992	1.0026	0.3707	0.021*
C13	0.3347 (4)	0.9203 (3)	0.29778 (18)	0.0172 (6)
H13A	0.3980	0.9937	0.2935	0.021*
C14	0.9449 (4)	1.1036 (3)	0.16027 (19)	0.0186 (6)
H14A	0.8340	1.1563	0.1345	0.028*
H14B	1.0398	1.1612	0.1460	0.028*
H14C	0.9142	1.0774	0.2241	0.028*
C15	-0.2224 (4)	0.7057 (3)	0.4121 (2)	0.0236 (6)
H15A	-0.2238	0.6787	0.3570	0.035*
H15B	-0.3496	0.7309	0.4400	0.035*
H15C	-0.1552	0.6275	0.4515	0.035*
C16	-0.2284 (4)	0.9532 (3)	0.4263 (2)	0.0248 (6)
H16A	-0.2241	1.0353	0.3784	0.037*
H16B	-0.1688	0.9626	0.4740	0.037*
H16C	-0.3574	0.9455	0.4481	0.037*
S1	0.39079 (9)	0.30482 (7)	0.18364 (5)	0.01550 (19)
01	0.3624 (3)	0.2330 (2)	0.11664 (13)	0.0202 (4)
02	0.4315 (3)	0.4458 (2)	0.14332 (13)	0.0214 (5)
O3	0.5235 (3)	0.2178 (2)	0.24342 (14)	0.0205 (4)
C17	0.1685 (3)	0.3327 (3)	0.25164 (18)	0.0138 (5)
C18	0.0064 (4)	0.3932 (3)	0.21068 (18)	0.0157 (5)
H18A	0.0153	0.4239	0.1488	0.019*
C19	-0.1682 (4)	0.4069 (3)	0.26349 (19)	0.0170 (6)
H19A	-0.2767	0.4449	0.2364	0.020*
C20	-0.1835 (4)	0.3651 (3)	0.35578 (19)	0.0182 (6)
C21	-0.0197 (4)	0.3085 (3)	0.39579 (19)	0.0196 (6)
H21A	-0.0280	0.2819	0.4578	0.024*
C22	0.1561 (4)	0.2916 (3)	0.34368 (18)	0.0166 (6)
H22A	0.2647	0.2529	0.3707	0.020*
C23	-0.3743 (4)	0.3757 (3)	0.4126 (2)	0.0266 (7)
H23A	-0.3581	0.3418	0.4746	0.040*
H23B	-0.4472	0.3190	0.3963	0.040*
H23C	-0.4389	0.4730	0.4031	0.040*
O1W	0.7344 (3)	0.5643 (2)	0.04598 (15)	0.0251 (5)
H1W1	0.645 (7)	0.524 (5)	0.070 (3)	0.056 (13)*
H2W1	0.699 (5)	0.618 (4)	-0.009 (3)	0.033 (10)*
	· · ·		× 2	

Atomic displacement parameters	$(Å^2)$
Atomic displacement parameters	(\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0088 (10)	0.0153 (11)	0.0197 (11)	-0.0024 (9)	-0.0005 (9)	-0.0051 (9)
N2	0.0114 (12)	0.0250 (13)	0.0286 (13)	-0.0059 (10)	0.0045 (10)	-0.0096 (10)
C1	0.0078 (12)	0.0207 (14)	0.0230 (14)	-0.0019 (10)	-0.0013 (10)	-0.0038 (11)
C2	0.0083 (13)	0.0234 (14)	0.0237 (14)	0.0021 (11)	0.0016 (11)	-0.0049 (11)
C3	0.0164 (14)	0.0163 (13)	0.0209 (14)	0.0024 (11)	-0.0021 (11)	-0.0034 (11)
C4	0.0140 (13)	0.0148 (13)	0.0213 (14)	-0.0014 (10)	-0.0025 (11)	-0.0032 (11)
C5	0.0115 (13)	0.0154 (13)	0.0180 (13)	-0.0019 (10)	-0.0030 (10)	-0.0019 (10)
C6	0.0109 (13)	0.0168 (13)	0.0203 (14)	-0.0003 (10)	-0.0005 (10)	-0.0040 (11)
C7	0.0113 (13)	0.0174 (13)	0.0231 (14)	-0.0003 (10)	-0.0018 (11)	-0.0046 (11)
C8	0.0105 (13)	0.0167 (13)	0.0211 (14)	-0.0016 (10)	-0.0023 (10)	-0.0022 (10)
C9	0.0136 (14)	0.0154 (13)	0.0251 (14)	-0.0002 (11)	-0.0034 (11)	-0.0050 (11)
C10	0.0129 (13)	0.0149 (13)	0.0239 (14)	-0.0069 (10)	-0.0024 (11)	-0.0026 (11)
C11	0.0102 (13)	0.0192 (13)	0.0179 (13)	-0.0028 (10)	-0.0011 (10)	-0.0018 (10)
C12	0.0149 (13)	0.0166 (13)	0.0213 (14)	-0.0028 (11)	-0.0015 (11)	-0.0052 (11)
C13	0.0117 (13)	0.0175 (13)	0.0221 (14)	-0.0035 (10)	-0.0024 (11)	-0.0028 (11)
C14	0.0114 (13)	0.0176 (13)	0.0275 (15)	-0.0020 (10)	0.0016 (11)	-0.0100 (11)
C15	0.0147 (14)	0.0294 (16)	0.0268 (15)	-0.0090 (12)	0.0022 (12)	-0.0054 (12)
C16	0.0145 (14)	0.0289 (16)	0.0283 (16)	-0.0032 (12)	0.0053 (12)	-0.0082 (13)
S1	0.0063 (3)	0.0145 (3)	0.0248 (4)	-0.0030 (2)	0.0034 (2)	-0.0058 (3)
01	0.0130 (10)	0.0195 (10)	0.0287 (11)	-0.0047 (8)	0.0046 (8)	-0.0104 (8)
O2	0.0116 (10)	0.0181 (10)	0.0320 (11)	-0.0049 (8)	0.0060 (8)	-0.0052 (8)
03	0.0055 (9)	0.0211 (10)	0.0332 (11)	0.0004 (7)	-0.0020 (8)	-0.0057 (8)
C17	0.0055 (12)	0.0123 (12)	0.0236 (14)	-0.0031 (9)	0.0029 (10)	-0.0064 (10)
C18	0.0112 (13)	0.0150 (13)	0.0210 (14)	-0.0029 (10)	-0.0015 (10)	-0.0040 (10)
C19	0.0086 (12)	0.0130 (13)	0.0296 (15)	0.0001 (10)	-0.0039 (11)	-0.0059 (11)
C20	0.0087 (13)	0.0195 (13)	0.0269 (15)	-0.0050 (10)	0.0044 (11)	-0.0086 (11)
C21	0.0153 (14)	0.0233 (14)	0.0196 (14)	-0.0052 (11)	0.0006 (11)	-0.0043 (11)
C22	0.0091 (13)	0.0171 (13)	0.0244 (14)	-0.0032 (10)	-0.0028 (10)	-0.0049 (11)
C23	0.0117 (14)	0.0357 (17)	0.0310 (16)	-0.0056 (12)	0.0055 (12)	-0.0098 (13)
O1W	0.0169 (11)	0.0311 (12)	0.0287 (12)	-0.0126 (9)	0.0002 (9)	-0.0038 (10)

Geometric parameters (Å, °)

N1—C1	1.360 (3)	C14—H14A	0.9600
N1—C5	1.372 (3)	C14—H14B	0.9600
N1—C14	1.480 (3)	C14—H14C	0.9600
N2—C11	1.374 (3)	C15—H15A	0.9600
N2—C15	1.450 (4)	C15—H15B	0.9600
N2—C16	1.454 (4)	C15—H15C	0.9600
C1—C2	1.371 (4)	C16—H16A	0.9600
C1—H1A	0.9300	C16—H16B	0.9600
C2—C3	1.390 (4)	C16—H16C	0.9600
C2—H2A	0.9300	S1—O3	1.454 (2)
C3—C4	1.378 (4)	S1—O2	1.4553 (19)
С3—НЗА	0.9300	S1—O1	1.464 (2)

C4—C5	1.396 (4)	S1—C17	1.780 (3)
C4—H4A	0.9300	C17—C22	1.381 (4)
C5—C6	1 456 (4)	C17—C18	1 396 (4)
C6—C7	1 343 (4)	C18—C19	1 389 (4)
С6—Н6А	0.9300	C18—H18A	0.9300
C7—C8	1 458 (4)	C19—C20	1 384 (4)
С7—Н7А	0.9300	C19—H19A	0.9300
C8—C13	1 402 (4)	C20—C21	1 395 (4)
C8—C9	1 406 (4)	C20—C23	1.511 (4)
C9—C10	1 377 (4)	C21—C22	1 392 (4)
С9—Н9А	0.9300	C21—H21A	0.9300
C10—C11	1 411 (4)	С22—Н22А	0.9300
C10—H10A	0.9300	C23—H23A	0.9600
C11-C12	1 407 (4)	C23—H23B	0.9600
C12-C13	1 383 (4)	C23_H23C	0.9600
C12_H12A	0.9300	01W_H1W1	0.83 (5)
C13—H13A	0.9300	O1W—H2W1	0.94 (4)
C1N1C5	121 8 (2)	H144H14B	109.5
C1 - N1 - C14	121.0(2) 1170(2)	N1_C14_H14C	109.5
C_{2} N1 C_{14}	117.0(2) 121.2(2)	$H_{14} - C_{14} - H_{14}C$	109.5
$C_{11} = N_{12} = C_{15}$	121.2(2) 120.3(2)	$H_{14}B_{-C_{14}}H_{14}C$	109.5
$C_{11} = N_2 = C_{15}$	120.5(2)	M_{2} M_{2	109.5
$C_{11} = N_2 = C_{10}$	120.0(2) 118.9(2)	N2C15H15B	109.5
N1_C1_C2	110.9(2) 121.1(2)	$H_{15} - C_{15} - H_{15} B$	109.5
N1 = C1 = H1A	110.5	N2 C15 H15C	109.5
$\Gamma_{1} = \Gamma_{1} = \Pi_{1} \Lambda_{1}$	119.5	H15A C15 H15C	109.5
$C_2 = C_1 = M_1 X$	119.5 118.9(2)	H15B_C15_H15C	109.5
C1 - C2 - C3	120.5	N2H16A	109.5
$C_1 = C_2 = H_2 \Lambda$	120.5	N2 C16 H16B	109.5
$C_3 = C_2 = H_2 A$	120.5		109.5
$C_4 = C_3 = C_2$	119.4 (2)	$N_2 C_{16} H_{16}C$	109.5
C_{1} C_{2} C_{3} H_{3}	120.3		109.5
$C_2 = C_3 = \Pi_3 A$	120.5 121.5(2)	H16R C16 H16C	109.5
C_{3} C_{4} H_{4A}	121.5 (2)	$\frac{1100}{2} = \frac{10}{100} = \frac{1100}{100}$	109.5 112.72(11)
$C_{5} = C_{4} = H_{4}$	119.5	03 = 51 = 02	113.73(11) 113.30(12)
N1 C5 C4	117.3 (2)	03 = 31 = 01	113.30(12) 111.86(12)
N1_C5_C6	117.3(2)	02 - 51 - 01	111.00(12) 106.05(12)
$N_1 = C_2 = C_0$	110.9(2) 122.8(2)	03 = 31 = C17	100.03(12) 105.60(11)
$C_{4} = C_{5} = C_{6}$	123.8(2)	02 - 31 - C17	105.09(11) 105.25(11)
$C_{7} = C_{6} = U_{6}$	122.8 (2)	01 - 51 - 017	105.55(11) 120.5(2)
C = C = H = A	118.0	$C_{22} = C_{17} = C_{18}$	120.3(2)
C_{5}	110.0	$C_{22} - C_{17} - S_{1}$	120.3(2)
$C_{0} = C_{1} = C_{8}$	120.8 (3)	$C_{10} = C_{17} = S_{17}$	119.2(2)
$C_{0} = C_{1} = H_{1}^{2} A$	110.0	$C_{19} = C_{18} = C_{17}$	119.1 (2)
$C_0 - C_1 - \Pi/A$	110.0	C17 - C10 - H10A	120.4
$C_{13} = C_{0} = C_{7}$	117.2(2)	$C_{1} = C_{10} = C_{10} = C_{10}$	120.4
$C_{13} - C_{0} - C_{1}$	123.7(2)	$C_{20} = C_{19} = C_{10}$	121.2 (2) 110 4
C_{7}	119.0(2)	$C_{20} = C_{12} = H_{12A}$	119.4
$C_{10} = C_{2} = C_{2}$	122.1 (2)	С10—С19—П19А	119.4
Сто-Су-пуА	119.0	U19 - U20 - U21	118.9 (2)

С8—С9—Н9А	119.0	C19—C20—C23	120.9 (3)
C9—C10—C11	120.6 (2)	C21—C20—C23	120.2 (3)
С9—С10—Н10А	119.7	C22—C21—C20	120.6 (3)
C11-C10-H10A	119.7	C22—C21—H21A	119.7
N2—C11—C12	121.5 (2)	C20-C21-H21A	119.7
N2-C11-C10	121.1 (2)	C17—C22—C21	119.6 (2)
C12-C11-C10	117.4 (2)	C17—C22—H22A	120.2
C13—C12—C11	121.5 (2)	C21—C22—H22A	120.2
C13—C12—H12A	119.3	C20—C23—H23A	109.5
C11—C12—H12A	119.3	С20—С23—Н23В	109.5
C12—C13—C8	121.1 (2)	H23A—C23—H23B	109.5
C12—C13—H13A	119.5	С20—С23—Н23С	109.5
C8—C13—H13A	119.5	H23A—C23—H23C	109.5
N1-C14-H14A	109.5	H23B—C23—H23C	109.5
N1-C14-H14B	109.5	H1W1—O1W—H2W1	105 (4)
C5—N1—C1—C2	0.8 (4)	C9—C10—C11—N2	175.4 (3)
C14—N1—C1—C2	-178.9 (3)	C9-C10-C11-C12	-3.8 (4)
N1—C1—C2—C3	0.1 (4)	N2-C11-C12-C13	-176.0 (3)
C1—C2—C3—C4	-0.1 (4)	C10-C11-C12-C13	3.1 (4)
C2—C3—C4—C5	-0.8 (4)	C11—C12—C13—C8	-0.1 (4)
C1—N1—C5—C4	-1.7 (4)	C9—C8—C13—C12	-2.3 (4)
C14—N1—C5—C4	178.1 (2)	C7—C8—C13—C12	176.7 (3)
C1—N1—C5—C6	177.6 (2)	O3—S1—C17—C22	8.8 (2)
C14—N1—C5—C6	-2.6 (4)	O2—S1—C17—C22	-112.3 (2)
C3—C4—C5—N1	1.7 (4)	O1—S1—C17—C22	129.2 (2)
C3—C4—C5—C6	-177.6 (3)	O3—S1—C17—C18	-169.54 (19)
N1—C5—C6—C7	-172.2 (3)	O2—S1—C17—C18	69.4 (2)
C4—C5—C6—C7	7.1 (4)	O1—S1—C17—C18	-49.1 (2)
C5—C6—C7—C8	176.3 (3)	C22-C17-C18-C19	-2.3 (4)
C6—C7—C8—C13	-2.3 (4)	S1—C17—C18—C19	176.08 (19)
C6—C7—C8—C9	176.7 (3)	C17—C18—C19—C20	1.6 (4)
C13—C8—C9—C10	1.6 (4)	C18-C19-C20-C21	0.1 (4)
C7—C8—C9—C10	-177.4 (3)	C18—C19—C20—C23	-177.9 (2)
C8—C9—C10—C11	1.5 (4)	C19—C20—C21—C22	-1.3 (4)
C15—N2—C11—C12	-171.6 (3)	C23—C20—C21—C22	176.7 (2)
C16—N2—C11—C12	3.5 (4)	C18—C17—C22—C21	1.1 (4)
C15—N2—C11—C10	9.3 (4)	S1—C17—C22—C21	-177.2 (2)
C16—N2—C11—C10	-175.6 (3)	C20—C21—C22—C17	0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1W1···O2	0.83 (5)	1.96 (5)	2.774 (3)	170 (4)
O1W—H2W1···O1 ⁱ	0.94 (4)	1.99 (4)	2.906 (3)	167 (3)
C1—H1A···O1 ⁱⁱ	0.93	2.55	3.424 (3)	157
C2—H2A···O1 ⁱⁱⁱ	0.93	2.54	3.382 (4)	150
C4—H4A…O1W	0.93	2.35	3.222 (4)	157
C6—H6A···O3 ^{iv}	0.93	2.53	3.456 (4)	176

С9—Н9А…О2	0.93	2.49	3.376 (3)	158
C13—H13A···O3 ^{iv}	0.93	2.49	3.390 (4)	164
C14—H14B···O1 ⁱⁱ	0.96	2.56	3.479 (4)	161
C22—H22A···O3	0.93	2.51	2.894 (3)	105
	()	(*) · · 1		

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y+1, z; (iii) -x+2, -y+1, -z; (iv) x, y+1, z.

Fig. 1

Fig. 2

